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Abstract

There is considerable interest in prediction of reactive hazards based on chemical structure.
Calorimetric measurements to determine reactivity can be resource consuming, so computational
methods to predict reactivity hazards present an attractive option. This paper reviews some of
the commonly employed theoretical hazard evaluation techniques, including the oxygen-balance
method, ASTM CHETAH, and calculated adiabatic reaction temperature (CART). It also discusses
the development of a study table to correlate and predict calorimetric properties of pure compounds.
Quantitative structure–property relationships (QSPR) based on quantum mechanical calculations
can be employed to correlate calorimetrically measured onset temperatures,To, and energies of
reaction,−�H, with molecular properties. To test the feasibility of this approach, the QSPR tech-
nique is used to correlate differential scanning calorimeter (DSC) data,To and−�H, with molecular
properties for 19 nitro compounds.
© 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

A question that is frequently encountered during processing, storage, or handling of
a chemical is “Does this chemical pose reactive hazards?” An analogous problem is the
estimation of chemical incompatibilities. Certain compositions are unstable by nature and
susceptible to violent reaction in which chemical energy is converted to heat or mechanical
energy that are potential hazards.

Generally, rules of thumb based on prior experience and chemical knowledge are used
for screening and estimating reactive hazards of compounds. For example, the presence of a
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‘nitro’ group is regarded as an indicator of potential energy, as in trinitrotoluene (TNT). At-
tempts have been made to develop a generalized framework for estimating reactive hazards
based on molecular structure, such as the oxygen-balance method[1], chemical thermo-
dynamic and energy release evaluation (CHETAH)[2], and calculated adiabatic reaction
temperature (CART)[3]. However, these methodologies have limitations, and considerable
chemical intuition and experience are required for their effective use. Also, the reliability
of estimations for a range of compounds and process conditions varies significantly[4].

A reliable experimental technique for assessing reactivity is calorimetric analysis, which
can be resource consuming and thus, possible only for a limited set of compounds. So, one of
the challenges is extension of calorimetric tests on these limited set of compounds to a myriad
of other compounds and compositions. This paper provides a brief review of computational
methods that can be employed quickly to estimate reactive hazards and a description of our
recent efforts to develop a method for correlating and predicting calorimetric data.

2. Review of available methods

This section reviews some popular methods for reactivity hazard evaluation, including
their strengths and limitations, and it attempts to provide the reader with enough information
to choose a method for a particular application. Some of these methods have been reviewed
previously[3].

2.1. Rule of thumb

The presence of certain functional groups is considered an indicator of reactivity. This is
the simplest possible reactivity screening method and serves as a guideline for further anal-
ysis. For example, chemicals containing the following functional groups can be considered
potentially reactive:

–NO2: organic nitro compounds;
–O–O–, –O–OH : organic/inorganic peroxide and hydroperoxide compounds;
–C≡C–: triple bonded carbon atoms as in acetylene and acetylenic compounds.

A comprehensive summary of reactive groups can be found in Bretherick’s handbook
[5].

2.2. Oxygen-balance method

A quantitative correlation was shown between oxygen-balance and various measures of
explosive effectiveness for several classes of more than 300 compounds organic explosives
[1], and the following formula was recommended for calculating oxygen-balance for a
compound:

oxygen balance= −1600(2X + Y/2 − Z)

MW
(1)
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Table 1
Oxygen-balance and hazard rank

Oxygen-balance Hazard rank

More positive than+160 Low
+160 to+80 Medium
+80 to−120 High
–120 to−240 Medium
More negative than−240 Low

whereX is the number of atoms of carbon,Y the number of atoms of hydrogen,Z the number
of atoms of oxygen, and MW the molecular weight.

The above formula yields a value of zero for oxygen-balanced compounds, negative for
oxygen-poor, and positive for oxygen-rich compositions. This method is a criterion used
in the CHETAH program, and the classification indicated inTable 1is recommended for
estimating hazard potential based on oxygen-balance[6].

2.2.1. Strengths
The oxygen-balance method is useful for estimating hazards of organic nitro compounds

and is universally employed in the explosive industry. In general, this method is applicable
to compounds containing C, H, N, and O[6].

2.2.2. Weaknesses
However, it has been shown that there is no necessary connection between oxygen-balance

and self-reactivity[6]. For example, water (H2O) has an oxygen-balance value of zero
(0) and is given a ‘high’ hazard ranking by this criterion. Also, the method cannot be
applied to oxygen-free but hazardous compounds such as acetylene. Application of the
above oxygen-balance equation to low-oxygen content or oxygen-free compounds produces
a highly negative, non-hazardous ranking regardless of the actual hazard potential.

2.3. CHETAH

CHETAH is a popular program by the American Society for Testing and Materials
(ASTM) for prediction of reactivity hazards[2]. The software uses the‘Benson group con-
tribution method’ [7] to estimate heat capacity, heat of formation, and heat of combustion for
a multitude of compounds. Also, the program includes a database of thermo-chemical prop-
erties for selected organic and inorganic compounds. CHETAH classifies chemicals based
on their potential for violent explosion and includes the following hazard evaluation criteria:

1. Maximum heat of decomposition.
2. Oxygen-balance.

According to the first criterion, compositions with heats of reaction more negative and
therefore, more exothermic than−2.929 kJ/g are placed in a ‘high’ hazard category. A de-
tailed explanation of the above evaluation criteria and three additional ones can be found in
the CHETAH reference manual, and a critical review of CHETAH for predicting reactivity
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hazards is available[8]. The first criterion has proved to be a reliable indicator of poten-
tial reactive hazards. The other criteria, however, are not effective for all chemicals and
compositions[8].

2.3.1. Input to the program
The molecular formula of a compound is the only input to the program. From the included

database, the thermodynamic properties are estimated and the hazard criteria are determined
from these values. An energy release evaluation sheet from CHETAH 7.2 is shown inFig. 1.

Fig. 1. Hazard evaluation and ranking for hydrogen peroxide using CHETAH 7.2.
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Based on its maximum heat of decomposition, H2O2 is given a “high” hazard classification.
However, it should be noted that the estimated product spectrum might be incorrect. Thus,
one problem is the thermodynamic feasibility of a proposed stoichiometry under process
conditions. Further, the program gives no indication about the sensitivity to initiation of
reaction or process conditions to be avoided. It is difficult to determine conditions under
which H2O2 may pose reactive hazards based only on such an analysis. Thus, the problem
of reactivity is not just a combinatorial problem (stoichiometric analysis) as implicitly
suggested by this method. It is important to realize that CHETAH provides an estimate of
a material hazard but not an estimate of the process risk in using the material.

2.3.2. Strengths
The software is user-friendly and offers the flexibility to include user-defined group

values. It is computationally inexpensive and can be installed on a PC.

2.3.3. Weaknesses
The Benson method can fail for group values that are not available in the database or are

incorrect. In the evaluation criteria, the program classifies compounds or compositions into
specific hazard categories. Thus, the program places a boundary based on a threshold value
and thereby blurs the distinction between hazardous and non-hazardous chemicals. Also,
the program provides no insight into process conditions to be avoided or information about
the sensitivity of compounds to initiation of a reaction.

2.4. CART

Adiabatic temperature rise due to a reaction is defined as[3]:

�Tadiabatic= −�H

Cp

(2)

where�H is the heat of reaction,Cp the average heat capacity of the reacting mixture,
�Tadiabaticthe adiabatic temperature rise.

The code developed for CART performs multiphase Gibbs free energy minimization
and adiabatic reaction temperature calculations. Based on the calculated�Tadiabatic, the
substance is classified as[3]:

• E—can explode when unconfined;
• N—no known explosion hazard when unconfined.

An adiabatic temperature rise of 1400 K is considered a cut-off value for the above
classification. Thus, substances with an adiabatic temperature rise of more than 1400 K
are classified as E and lower than 1400 K as N. This value is based on the fact that most
combustion reactions leading to formation of CO2 and H2O have a threshold temperature
value near 1400 K, which is the minimum temperature required for carbon monoxide to
propagate a self-sustaining flame. A cut-off value of 1200 K for conservative estimates is
recommended[3].

The heat of reaction can be approximated by the maximum heat of decomposition that is
calculated by CHETAH. For H2O2, CHETAH estimates a maximum heat of decomposition



20 S.R. Saraf et al. / Journal of Hazardous Materials A98 (2003) 15–29

of −25.27 kcal/mol andCp as 10.31 cal/mol K, yielding an adiabatic temperature rise of
2450 K.

Based on the above discussion, H2O2 would be classified as E. Again, this value is useful
but it does not provide information about process conditions to be avoided. It is worth noting
that for H2O2, the CHETAH criteria and the adiabatic temperature value indicate a potential
reactive hazard.

2.4.1. Input to the CART method
The heat of reaction, heat capacity of the reaction mixture, and other system thermo-

chemical values are required program inputs. All of these values can be obtained from the
literature or estimated using the CHETAH program.

2.4.2. Strengths
The CART criterion takes into account the heat capacity of the reaction mixture and is

therefore, more effective than employing only the reaction energy of the first CHETAH cri-
terion. Higher CART values are associated with greater sensitivities to initiation and higher
propagation rates. CHETAH programmers should probably include ‘adiabatic temperature
rise’ as one of the hazard evaluation criteria.

2.4.3. Weaknesses
Thermo-physical values, such as�H andCp, must be used to estimate the adiabatic rise

in temperature. The heat of reaction can be approximated by the maximum heat of decom-
position calculated by CHETAH, and CHETAH can also be used to estimate the average
Cp value. If the CHETAH program is employed to calculate thermo-physical values, limi-
tations similar to the group contribution method are encountered, as discussed above. The
classification based on adiabatic temperature rise works well for hazard estimation of com-
pounds undergoing combustion reactions. For compounds that do not undergo combustion
type reactions, determining a threshold value of�Tadiabaticis difficult. As pointed out in
the same reference[3], the CART classification and heats of reaction values fail for haz-
ard ranking of organic peroxides. Also, like CHETAH, this classification places a distinct
boundary based on a threshold value. It is also worth noting that for a realistic calculation
of �Tadiabatic, an average value of heat capacity for the reaction mixture is required, and
accurate heat capacity values are difficult to estimate.

3. Modeling reactivity

A reactive incident involves conversion of stored chemical energy of the components and
can thus, be symbolically represented as:

chemical energy→ heat/mechanical energy

It is the uncontrolled release of this stored energy that is hazardous. Information about
the amount of energy released and the rate of energy released for a process chemical can
be obtained by performing calorimetric tests on the chemical. There are many different
calorimeters available for screening or detailed testing. Before a detailed calorimetric
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analysis is performed, the chemicals are screened by employing relatively less resource
consuming techniques such as a differential scanning calorimeter (DSC).

Typically in a DSC a small amount of sample (1–20 mg) is placed in a capsule and heated
at a constant rate (1–10◦C/min) from room temperature to 400◦C. In a DSC, a sample and
a reference are subjected to a continuously increasing temperature, and heat is added to the
reference to maintain it at the same temperature as the sample. This added heat compensates
for heat lost or gained as a consequence of an overall endothermic or exothermic reaction.

When the rate of heat generation (W ) in the sample exceeds a particular value, the heat
supply to the sample is removed, and this additional heat gain is attributed to exothermic
activity within the sample. This detection of heat generation above a threshold value depends
on the sensitivity of the particular instrument. The temperature at which chemical reaction
causes a detectable rise in heat generation is called the onset temperature (Tonset), which
is a measure of the reaction kinetics and serves as a guide for selecting process or storage
temperatures. TheTonsetis determined following a graphical procedure to detect either the
first deviation from the baseline or the intersection of the baseline and a tangent to the
rise in supplied heat. The energy released (−�H) during the process is calculated as the
area under the heat-supplied (W ) and time curve. Thus, the onset temperature (Tonset) and
the energy of reaction (−�H) are two important parameters obtained from a DSC run. The
onset temperature indicates the temperature at which the reaction is initiated (as detected by
the calorimeter), and the energy of reaction is a measure of the magnitude of an exotherm.
A sample DSC run is shown inFig. 2.

But a reactivity assessment cannot be achieved by experimental methods alone. For
example, the two hydrogen atoms in hydrogen peroxide (HO–OH) can be replaced by any of
the following 10 groups: H, C1–C6 (aliphatic chains), benzene, toluene, or xylene. Thus, 100
different peroxide compounds must be evaluated to obtain the reactivity data for the possible
compounds containing the –O–O– linkage. Assuming two DSC runs per compound (at least)
and 2 h per calorimetric run, the analysis would take at least 200 h. But there are many

Fig. 2. DSC run[26].
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different possible combinations of functional groups (e.g. alkenes, alkynes, isomers) and
compositions (e.g. 10, 20, 80% H2O2). Sometimes experimentation is not feasible because
of the toxic nature of chemicals and products or if the compound is not available or does not
exist as in product design. Experiments with more sophisticated calorimeters such as the vent
size package (VSP) (http://www.fauske.com), the automated pressure tracking adiabatic
calorimeter (APTAC) (http://www.adlittle.com), or the accelerating rate calorimeter (ARC)
[9] require more time, larger samples, and greater efforts.

The computational methods cannot be employed independently to estimate reactive haz-
ards but must be implemented synergistically with experimental measurements to reduce
experimental effort and to expedite reactive hazard evaluations. The primary objective is to
extend and complement available experimental data with predictions for the species where
no or few experimental data exist. Also, theoretical methods avoid the risks of experimen-
tal testing. The following section describes another approach to predict calorimetric data,
by bridging the gap between macroscopic (calorimetric data) and microscopic (molecular)
properties.

4. Structure based screening tool

The exothermic behavior of a substance is influenced by the presence of functional
groups[10–12], which also form a basis for reactivity classification. This approach suggests
that there is an inherent structure–property relationship between the observed calorimetric
properties and molecular structure. For example, as mentioned earlier, the presence of nitro
group (NO2) can be considered a potential source of significant reactivity. The reactive
nature is manifested in calorimetric data, but this dependence of observed behavior and
molecular structure has not been quantified.

The quantitative structure–property relationship (QSPR) is a popular tool for correlating
observed values based on molecular properties. QSPR techniques have been successfully
employed for drug design[13] and for correlating physical properties such as boiling point
[14], autoignition temperature[15], and molecular properties. In addition to providing a
means of predicting properties, a QSPR study may also lead to better understanding of
structural features affecting the observed data. Our objective here is to correlate and predict
DSC calorimetric data, namely onset temperature and energy of reaction.

(a) Onset temperature (Tonset): The onset temperature represents detection of a chemical
reaction and is a measure of potential energy and kinetics of the reaction. It is indeed a
‘detected’ onset because the value depends on the sensitivity of the instrument and ex-
perimental technique. Depending on the type of calorimeter, sample size, and scanning
rate,Tonsetcan vary within 5–50◦C for the same compound.

(b) Energy of reaction (−�H): The energy of reaction, often due to decomposition or
polymerization, is the net heat released during a reaction. This energy is not the ther-
modynamic heat of reaction, because it includes other effects such as evaporation and
enthalpy of mixing, and heat absorbed by the sample cell.

We built a quantitative property–structure relationship (QSPR) study table to develop the
correlation. The first column of this table is eitherTonsetor energy of reaction obtained from

http://www.fauske.com
http://www.adlittle.com
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calorimetric experiments and is called the dependent variable. The remaining columns are
the independent variables (characteristic of the molecules) called descriptors, which are
characteristics of a molecule and account for the chemical structure of the molecule. A
descriptor value can be obtained by experimental measurement or calculated based on
molecular structure. We have used calculated descriptors to facilitate property predictions
for unknown molecules.

4.1. Data set selection

We chose compounds belonging to the organic nitro family since a better correlation
of properties is expected within a family of similar compounds. This set of compounds
used to develop the correlation is called a ‘training set’. The choice of data is critical for an
effective correlation, and we chose data from a single reference[16] to maintain consistency
in experimental procedure and calorimetric sensitivity. With a larger data set a predictive
model could be developed, but we could not find a large set of consistent data in the open
literature.

4.2. Discussion of a few descriptors

The choice of descriptors depends on the property to be correlated. Here we chose de-
scriptors that were expected to correlate with the detected onset temperature or determined
energy of reaction.

(a) Highest occupied molecular orbital (HOMO): The HOMO is the highest ground state
energy level in the molecule that contains electrons. Molecules with high energy
HOMOs are more easily able to donate their electrons and are relatively reactive
compared to molecules with lower HOMO values.

(b) Lowest unoccupied molecular orbital (LUMO): The LUMO is the lowest ground
state energy level in the molecule that contains no electrons. Molecules with lower
LUMO values are able to accept electrons more easily than those with higher LUMO
values.

(c,d) Highest positive charge (HPC) and highest negative charge (HNC): These descriptors
are probable indicators of electrophillic or nucleophillic attacks and are expected to
correlate with theTonset, which is a measure of kinetics.

(e) Weakest bond (WB): The weakest bond, here the C–NO2 bond, in a molecule is
a kinetic descriptor, since it represents the minimum activation energy required for
initiating the reaction.

(f) Mid-point potential (Vmid): Previous work[17] has shown that the electrostatic poten-
tial produced by carbon and nitrogen charges at the C–NO2 bond mid-point correlates
with the impact sensitivity.

Vmid = QC

0.5R
+ QN

0.5R
(3)

whereQC is the atomic charge on carbon,QN the atomic charge on nitrogen,R the
C–NO2 bond distance.
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(g) Delocalizability index (Sr): Here the descriptor (Sr) is defined as

Sr =
HOMO∑

i=1

1

|εi | (4)

whereεi is the eigenvalue for the molecular orbital.
The Sr index is similar to Fukui’s superdeclocalizability index[18]. In the summa-

tion, the eigenvalues for higher molecular orbitals (which are numerically smaller)
will dominate, and Sr is therefore, a measure of delocalizability of electrons and a
probable measure of reactivity.

(h) Dipole moment: The degree of polarity of a molecule is expressed in terms of dipole
moment. The electric dipole moment for a pair of opposite charges is defined as the
magnitude of the charge times the distance between them, and the defined direction
is toward the positive charge. It is useful in atoms and molecules where the effects of
charge separation are measurable, but the distances between the charges are too small
to be easily measured. The dipole moment of the molecule was also included as one
of the descriptors.

(i) Charge–bond strength descriptor (x): This descriptor was calculated as follows:

x = HPC+ HNC

0.5WB
(5)

and is an indicator of charge to bond strength ratio in a molecule.

Values of these descriptors were obtained using the Gaussian[19] suite of programs
with the B3P86[20] (Becke 3 Perdew-Wang 86 (B3P86)) density functional model and the
cc-pVDZ[21] basis set. To develop a computationally inexpensive method, more sophisti-
cated models were not tested at this stage of the project. Further statistical calculations were
performed using the statistical analysis system (SAS)[22]. The details of the descriptors
values used for developing the correlation’s are available on request.

4.3. Correlation

The correlations were obtained by performing least square regression analysis on the
training set of molecules. The developed correlation has the form:

Y = A1X1 + A2X2 + A3X3 + · · · + AnXn

whereY is the dependent variable,X the independent variable (descriptor),A the regression
constant.

4.3.1. Tonset

The details of the experimental onset temperatures and predicted values used are sum-
marized inTable 2. A statistical analysis was performed on the all descriptors and their
combinations, and the chosen descriptors were the ones that maximized theR2 value and
minimized the error square terms[23]. As a result of this analysis the variables that ex-
hibited significant correlation with the dependent variable (Tonset) were retained, and the
statistically insignificant ones were discarded.
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Table 2
Onset temperatures, observed and predicted

S. no. Structure Tonset(◦C) Residual Error (%)
Experiment Predicted (Experiment–predicted)

1 Nitrobenzene 380 348 32 8
2 1,2-Dinitrobenzene 280 297 −17 −6
3 1,3-Dinitrobenzene 270 304 −34 −12
4 1,4-Dinitrobenzene 350 328 22 6
5 2-Nitrotoluene 290 309 −19 −7
6 3-Nitrotoluene 310 315 −5 −2
7 4-Nitrotoluene 320 311 9 3
8 2,6-Dinitrotoluene 290 280 10 3
9 3,4-Dinitrotoluene 280 261 19 7

10 2,4-Dinitrotoluene 250 260 −10 −4
11 2-Nitroaniline 280 256 24 9
12 3-Nitroaniline 300 302 −2 −1
13 4-Nitroaniline 310 279 31 10
14 2-Nitrobenzoic acid 270 281 −11 −4
15 3-Nitrobenzoic acid 300 296 4 1
16 4-Nitrobenzoic acid 310 295 15 5
17 2-Nitrophenol 250 274 −24 −10
18 3-Nitrophenol 310 316 −6 −2
19 4-Nitrophenol 270 309 −39 −14

Table 3
Experimental energy of reaction

S. no. Structure Energy of reaction (−�H)

J/g kcal/mol

1 Nitrobenzene 2757 81.1
2 1,2-Dinitrobenzene 3310 133.0
3 1,3-Dinitrobenzene 3488 140.1
4 1,4-Dinitrobenzene 3701 148.7
5 2-Nitrotoluene 2404 78.8
6 3-Nitrotoluene 2070 67.9
7 4-Nitrotoluene 2322 76.1
8 2,6-Dinitrotoluene 3451 150.2
9 3,4-Dinitrotoluene 3574 155.6

10 2,4-Dintitrotoluene 3987 173.6
11 2-Nitroaniline 2225 73.5
12 3-Nitroaniline 2269 74.9
13 4-Nitroaniline 2026 66.9
14 2-Nitrobenzoic acid 1894 75.6
15 3-Nitrobenzoic acid 1899 75.8
16 4-Nitrobenzoic acid 1934 77.2
17 2-Nitrophenol 2481 82.5
18 3-Nitrophenol 2269 75.4
19 4-Nitrophenol 2155 71.7
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We recommend the following correlation based on the training set of 19 nitro
compounds:

Tonset(
◦C) = 827.0−1036× HPC−4.43× Sr−5.07× dipole (6)

A standard overallF-test (α = 0.05) indicates that the fitted correlation is significant and
not a chance correlation. The predicted onset temperature values with an absolute average
aggregate error of 6% and a bias of−0.5% are listed inTable 2and are plotted against the
experimental values inFig. 3. A correlation of 0.6 is obtained between the predicted and the
observed values. This level of correlation is reasonable given significant variations in the
experimentally determined onset temperatures due to the graphical detection procedure, as
discussed above, and other associated errors.

4.3.2. Energy of reaction
It is observed that the energy of reaction values correlate strongly with the count of –NO2

in the nitro compounds[24], which is consistent with NO2 as an indicator of reactivity. The
experimental heat of reaction values for all the 19 compounds are noted inTable 3and
summarized for the nitro and dinitro compounds inTable 4. Thus, the correlation for the

Fig. 3. Predicted onset temperatures.
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Table 4
Summary of average energy of reaction (−�H) values

Compounds −�H (kcal/mol)

Mononitroa 75± 5
Dinitrob 150± 14

a Statistical analysis was performed on 1, 5–7, 11–19 compounds inTable 3.
b Statistical analysis was performed on 2–4, 8–10 compounds inTable 3.

energy of reaction in (kcal/mol) is:

−�H = 75× number of nitro groups (7)

Thus, for TNT (three nitro groups) the predicted energy of reaction is 225 kcal/mol, which
is consistent with the experimentally determined value of 239 kcal/mol[10].

5. Correlation using a semi-empirical method

The descriptors for the above study were generated using the B3P86/cc-pVDZ model.
Typically an optimization for an aromatic nitro molecule using this model requires about
an hour of CPU time on the supercomputer. Therefore, for the descriptors to be easily
calculable it is important that predictions be possible using the computationally inexpensive
semi-empirical theory, such as AM1[25].

An optimization using AM1 can be performed in few seconds. To use the correlation’s
generated earlier we must scale the AM1 descriptor values to the B3P86/cc-pVDZ values.
We found that the Sr and dipole descriptors calculated using the AM1 model correlated with
the B3P86/cc-pVDZ values to yieldR2 values of 0.98 and 0.82, respectively. However, the
HPC values calculated using the two models did not show a good correlation. We recommend
the following equations to scale the Sr and dipole moment:

SrB3P86= 1.31 SrAM1 − 0.11 (8)

dipoleB3P86= 0.93 dipoleAM1 − 0.21 (9)

With the scaled descriptors, the following three-parameter correlation can be employed
for calculatingTonset:

Tonset(
◦C) = 828.5−5.80× SrAM1−4.73× dipoleAM1 (10)

Using the AM1 scaled descriptors and the above two-parameter correlation, predictions
for onset temperatures for the 19 compounds yielded an average absolute aggregate error
of 7% and a bias of−1%, which is in good agreement with the predictions obtained using
the more expensive B3P86 descriptors.
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6. Conclusions

Computational screening methods are needed for efficient evaluation of reactive hazards.
The earlier methods attempted to classify the substances into ‘hazard’ categories. We have
demonstrated that it is possible to correlate the experimental DSC thermokinetic data with
molecular structure based descriptors for the nitro family of compounds. The descriptors
discussed earlier are general can be used to correlate the onset temperature for any system
of compounds. By employing large data sets for a variety of compounds, a predictive model
could be developed. The QSPR technique appears to provide a realistic estimation of hazards
and can be further improved by using a larger training set and more sophisticated quantum
chemical models. However, for the approach to be practical at the industrial level, it is
important that the developed correlation’s yield reasonable results with simpler models,
such as the semi-empirical AM1.

In this work, the onset temperatures and energies of reaction obtained from calorimetric
data were correlated with molecular descriptors, but similar methodology can be applied to
develop correlation’s for other experimental parameters such as self-accelerating decompo-
sition temperature (SADT), time to maximum rate (TMR), and kinetic rate constants. We are
collaborating with Dow Chemical and Eastman Kodak to obtain larger sets of calorimetric
data, and we are testing reactivity descriptors for diverse classes of chemicals. Our objec-
tive is to develop correlation’s that would yield satisfactory results with computationally
inexpensive theories that can be applied by industry personnel.
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